150 research outputs found

    Structure of multipartite entanglement in random cluster-like photonic systems

    Get PDF
    Quantum networks are natural scenarios for the communication of information among distributed parties, and the arena of promising schemes for distributed quantum computation. Measurement-based quantum computing is a prominent example of how quantum networking, embodied by the generation of a special class of multipartite states called cluster states, can be used to achieve a powerful paradigm for quantum information processing. Here we analyze randomly generated cluster states in order to address the emergence of multipartite correlations as a function of the density of edges in a given underlying graph. We find that the most widespread multipartite entanglement does not correspond to the highest amount of edges in the cluster. We extend the analysis to higher dimensions, finding similar results, which suggest the establishment of small world structures in the entanglement sharing of randomised cluster states, which can be exploited in engineering more efficient quantum information carriers.Comment: 6 pages, 8 figures, revtex4-

    Extremal Quantum Correlations: Experimental Study with Two-qubit States

    Full text link
    We explore experimentally the space of two-qubit quantum correlated mixed states, including frontier ones as defined by the use of quantum discord and von Neumann entropy. Our experimental setup is flexible enough to allow for the high-quality generation of a vast variety of states. We address quantitatively the relation between quantum discord and a recently suggested alternative measure of quantum correlations.Comment: 5 pages, 2 figure

    Experimental signature of Quantum Darwinism in photonic cluster states

    Get PDF
    We report on an experimental assessment of the emergence of Quantum Darwinism (QD) from engineered open-system dynamics. We use a photonic hyperentangled source of graph states to address the effects that correlations among the elements of a multi-party environment have on the establishment of objective reality ensuing the quantum-to-classical transition. Besides embodying one of the first experimental efforts towards the characterization of QD, our work illustrates the non-trivial consequences that multipartite entanglement and, in turn, the possibility of having environment-to-system back-action have on the features of the QD framework.Comment: 5 pages, 5 figures, Revtex4-

    Experimental Realization of the Deutsch-Jozsa Algorithm with a Six-Qubit Cluster State

    Full text link
    We describe the first experimental realization of the Deutsch-Jozsa quantum algorithm to evaluate the properties of a 2-bit boolean function in the framework of one-way quantum computation. For this purpose a novel two-photon six-qubit cluster state was engineered. Its peculiar topological structure is the basis of the original measurement pattern allowing the algorithm realization. The good agreement of the experimental results with the theoretical predictions, obtained at ∼\sim1kHz success rate, demonstrate the correct implementation of the algorithm.Comment: 5 pages, 2 figures, RevTe

    Experimental Realization of Polarization Qutrits from Non-Maximally Entangled States

    Full text link
    Based on a recent proposal [Phys. Rev. A 71, 062337 (2005)], we have experimentally realized two photon polarization qutrits by using non-maximally entangled states and linear optical transformations. By this technique high fidelity mutually unbiased qutrits are generated at a high brilliance level.Comment: RevTex, 8 pages, 6 figure

    Hyperentanglement witness

    Full text link
    A new criterium to detect the entanglement present in a {\it hyperentangled state}, based on the evaluation of an entanglement witness, is presented. We show how some witnesses recently introduced for graph states, measured by only two local settings, can be used in this case. We also define a new witness W3W_3 that improves the resistance to noise by increasing the number of local measurements.Comment: 6 pages, 2 figures, RevTex. v2: new title, minor changes in the explanation of the witness for hyperentangled states, more comments in the conclusions sectio

    Realization and characterization of a 2-photon 4-qubit linear cluster state

    Get PDF
    We report on the experimental realization of a 4-qubit linear cluster state via two photons entangled both in polarization and linear momentum. This state was investigated by performing tomographic measurements and by evaluating an entanglement witness. By use of this state we carried out a novel nonlocality proof, the so-called ``stronger two observer all versus nothing'' test of quantum nonlocality.Comment: 4 pages, 4 figure

    Hyperentanglement of two photons in three degrees of freedom

    Full text link
    A 6-qubit hyperentangled state has been realized by entangling two photons in three degrees of freedom. These correspond to the polarization, the longitudinal momentum and the indistinguishable emission produced by a 2-crystal system operating with Type I phase matching in the spontaneous parametric down conversion regime. The state has been characterized by a chained interferometric apparatus and its complete entangled nature has been tested by a novel witness criterium specifically introduced for hyperentangled states. The experiment represents the first realization of a genuine hyperentangled state with the maximum entanglement between the two particles allowed in the given Hilbert space.Comment: 4 pages, 2 figures, Revtex

    Generation of time-bin entangled photons without temporal post-selection

    Full text link
    We report on the implementation of a new interferometric scheme that allows the generation of photon pairs entangled in the time-energy degree of freedom. This scheme does not require any kind of temporal post-selection on the generated pairs and can be used even with lasers with short coherence time.Comment: RevTex, 6 pages, 8 figure

    Experimental Detection of Quantum Channels

    Full text link
    We demonstrate experimentally the possibility of efficiently detecting properties of quantum channels and quantum gates. The optimal detection scheme is first achieved for non entanglement breaking channels of the depolarizing form and is based on the generation and detection of polarized entangled photons. We then demonstrate channel detection for non separable maps by considering the CNOT gate and employing two-photon hyperentangled states.Comment: 8 pages, 9 figure
    • …
    corecore